我爱学习网 52xx.cn我爱学习网菜单按钮
  • 搜索
当前位置:首页 > 阅读 > 实用资料

快乐的寒假已经来临,在此

发布时间:2021-02-03 栏目:阅读 投稿:活泼的蜜粉

快乐的寒假已经来临,在此祝大家寒假开心、快乐哦!以下是由我爱学习网小编为大家精心带来的“七年级数学寒假作业答案2018”,仅供参考,欢迎大家阅读,希望能够帮助到您哦。

七年级数学寒假作业答案2018

1.-105.

2.设原来输入的数为x,则-1=-0.75,解得x=0.2

3.-;904.、-5.D6.A7.A8.B

9.(1)当a≠b时,方程有惟一解x=;当a=b时,方程无解;

(2)当a≠4时,方程有惟一解x=;

当a=4且b=-8时,方程有无数个解;

当a=4且b≠-8时,方程无解;

(3)当k≠0且k≠3时,x=;

当k=0且k≠3时,方程无解;

当k=3时,方程有无数个解.

10.提示:原方程化为0x=6a-12.

(1)当a=2时,方程有无数个解;

当a≠2时,方程无解.

11.10.512.10、26、8、-8提示:x=,9-k│17,则9-k=±1或9-k=±17.

13.2000提示:把(+)看作一个整体.14.1.515.A16.B17.B

18.D提示:x=为整数,又2001=1×3×23×29,k+1

可取±1、±3、±23、±29、±(3×23)、±(3×29)、±(23×29)、±2001共16个值,其对应的k值也有16个.

19.有小朋友17人,书150本.20.x=5

21.提示:将x=1代入原方程并整理得(b+4)k=13-2a,

此式对任意的k值均成立,

即关于k的方程有无数个解.

故b+4=0且13-2a=0,解得a=,b=-4.

22.提示:设框中左上角数字为x,

则框中其它各数可表示为:

x+1,x+2,x+3,x+7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24,

题意得:

x+(x+1)+(x+2)+(x+3)+„x+24=1998或1999或2000或2001,

即16x+192=2000或2080

解得x=113或118时,16x+192=2000或2080

又113÷7=16„余1,

即113是第17排1个数,

该框内的最大数为113+24=137;118÷7=16„余6,

即118是第17排第6个数,

故方框不可框得各数之和为2080.

7.列方程解应用题──有趣的行程问题答案

1.1或32.4.83.640

4.16

提示:设再过x分钟,分针时针第一次重合,分针每分钟走6°,时针每分钟走0.5°,则6x=0.5x+90+0.5×5,解得x=16.

5.C6.C提示:7.16

8.(1)设CE长为x千米,则1.6+1+x+1=2×(3-2×0.5),解得x=0.4(千米)

(2)若步行路线为A→D→C→B→E→A(或A→E→B→C→D→A)则所用时间为:(1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);

若步行路线为A→D→C→E→B→E→A(或A→E→B→E→C→D→A),

则所用时间为:(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时),

因为4.1>4,4>3.9,

所以,步行路线应为A→D→C→E→B→E→A(或A→E→B→E→C→D→A).

9.提示:设此人从家里出发到火车开车的时间为x小时

题意得:30(x-)=18(x+),解得x=1,

此人打算在火车开车前10分钟到达火车站,

骑摩托车的速度应为:=27(千米/小时)

10.7.5提示:先求出甲、乙两车速度和为=20(米/秒)

11.150、200

提示:设第一辆车行驶了(140+x)千米,

则第二辆行驶了(140+x)×=140+(46+x)千米,

题意得:x+(46+x)=70.

12.6613.B

14.D提示:设经过x分钟后时针分针成直角,则6x-x=180,解得x=32

15.提示:设火车的速度为x米/秒,

题意得:(x-1)×22=(x-3)×26,解得x=14,

从而火车的车身长为(14-1)×22=286(米).

16.设回车数是x辆,则发车数是(x+6)辆,

当两车用时相同时,则车站内无车,

题意得4(x+6)=6x+2,解得x=11,

故4(x+6)=68.即第一辆出租车开出,最少经过68分钟时,车站不能正点发车

8.列方程解应用题──设元的技巧答案

1.285713

2.设这个班共有学生x人,在操场踢足球的学生共有a人,1≤a≤6,

由+a=x,得x=a,又3│a,

故a=3,x=28(人).

3.244.C5.B

提示:设切下的每一块合金重x克,10千克、15千克的合金含铜的百分比分别为

a、b(a≠b),

则,

整理得(b-a)x=6(b-a),故x=6.

6.B提示:设用了x立方米煤气,则60×0.8+1.2(x-60)=0.88x.

7.设该产品每件的成本价应降低x元,

则[510×(1-4%)-(400-x)]×(1+10%)m=(510-400)m解得x=10.4(元)

8.18、15、14、4、8、10、1、

9.1:4提示:设原计划购买钢笔x支,圆珠笔y支,圆珠笔的价格为k元,

则(2kx-ky)×(1+50%)=2ky+kx,解得y=4x.

10.282.6m提示:设胶片宽为amm,长为xmm,

则体积为0.15axm3,盘上所缠绕的胶片的内、外半径分别为30mm和30+015×600=120(mm),其体积又可表示为(120-30)a=13500a(m3),

于是有0.15ax=13500a,x=90000≈282600,胶片长约282600mm,即282.6mm.

11.100提示:设原工作效率为a,工作总量为b,由-=20,得=100.

12.B13.A

14.C提示:设商品的进价为a元,标价为b元,

则80%b-a=20%a,解得b=a,

原标价出售的利润率为×100%=50%.

15.(1)(b-na)x+h

(2)由题意得得a=2b,h=30b.

若6个泄洪闸同时打开,3小时后相对于警戒线的水面高度为(b-na)x+h=-3b<0.

故该水库能在3个小时内使水位降至警戒线.

16.(1)设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,

则2at甲=at乙=T,得t甲:t乙=1:2.

(2)由题意得:=,由(1)知t乙=2t甲,

故=解得T=540.

甲车车主应得运费540××=20=2160(元),

乙、丙车主各得运费540××20=4320(元).

9.线段答案

1.2a+b2.123.5a+8b+9c+8d+5e4.D5.C

6.A提示:AQ+BC=2250>1996,所以A、P、Q、B四点位置如图所示:

7.MN>AB+NB提示:MN=MA+AN=AB,AB+NB=AB+(CN-BC)=AB8.MN=20或40

9.23或1提示:分点Q在线段AP上与点Q在线段PB上两种情况讨论

10.设AB=x,则其余五条边长度的和为20-x,由,得≤x<10

11.3提示:设AC=x,CB=y,则AD=x+,AB=x+y,CD=,CB=y,DB=,由题意得3x+y=23.

12.C提示:作出平面上5点,把握手用连接的线段表示.

13.D提示:平面内n条直线两两相交,最少有一个交点,最多有个交点.

14.A提示:考察每条通道的最大信息量,有3+4+6+6=19.

15.A提示:停靠点设在A、B、C三区,计算总路程分别为4500米、5000米、12000米,可排除选项B、C;设停靠点在A、B两区之间且距A区x米,则总路程为

30x+15(100-x)+10(300-x)=4500+5x>4500,又排除选项D.

16.(1)如图①,两条直线因其位置不同,可以分别把平面分成3个或4个区域;如图②,三条直线因其位置关系的不同,可以分别把平面分成4个、6个和7个区域.

(2)如图③,四条直线最多可以把平面分成11个区域,此时这四条直线位置关系是两两相交,且无三线共点.

(3)平面上n条直线两两相交,且没有三条直线交于一点,把平面分成an个区域平面本身就是一个区域,当n=1时,a1=1+1=2;当n=2时,a2=1+1+2=4;当n=3时,a3=1+1+2+3=7;当n=4时,a4=1+1+2+3+4=11,„

由此可以归纳公式an=1+1+2+3+„+n=1+=.

17.提示:应建在AC、BC连线的交点处.

18.记河的两岸为L,L′(如图),将直线L平移到L′的位置,则点A平移到A′,连结A′B交L′于D,过D作DC⊥L于C,则桥架在CD处就可以了.

10.角答案

1.45°2.22.5°提示:15×6°-135×0.5°

3.154.65.B6.A7.C8.B

9.∠COD=∠DOE提示:∠AOB+∠DOE=∠BOC+∠COD=90°

10.(1)下列示意图仅供参考

(2)略

11.345°提示:因90°<α+β+γ<360°,

故6°<(α+β+γ)<24°,计算正确的是23°,

所以α+β+γ=23°×15=345°.

12.∠EOF、∠BOD、∠BOC;∠BOF、∠EOC

13.若射线在∠AOB的内部,则∠AOC=8°20′;若射线OC在∠AOB的外部,则∠AOC=15°14.40°15.C16.D

17.20°提示:本题用方程组解特别简单,

设∠COD=x,∠BOC+∠AOD=y,由题意得:

18.提示:共有四次时针分针所夹的角为60°

(1)第一次正好为两点整

(2)第二次设为2点x分时,时针分针的夹角为60°,则x=10++10,解得x=21

(3)第三次设3点y分时,时针分针的夹角为60°,则y+10=+15,解得y=5

(4)第四次设为3点z分时,时针分针的夹角为60°,则z=15++10,解得z=27

相关推荐:

IPO和上市的具体区别分析

古人怎么送信(递情书)

模特艺考自我介绍范文

初二上册数学期中试卷及答案

周末早安心语正能量