出国留学考研网为大家提供
出国留学考研网为大家提供2018年考研数学概率重难点及常考题型,更多考研资讯请关注我们网站的更新!
总结考研中的常考题型,有助于我们更好的复习考试重点,对常考题型进行重点突破,争取在考场上拿到更多的分数,下面我们一起来看看考研数学中概率的重难点梳理及常考题型总结。
重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布
难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布
(4)常见分布的逆问题
1.定义:先对总体的分布中某些未知参数作某种假设,然后由所抽取的样本,构造合适的统计量,对所提出的假设作出判断:是接受还是拒绝,就称为假设检验。
大纲仅要求对总体分布函数中的未知参数提出假设并作检验,称为参数的假设检验。
2.假设检验的基本原理——小概率事件的实际不可能性原理(简称小概率原理)。
假设检验的推断原理是小概率事件的实际不可能原理即小概率原理,推断方法是概率性质的反证法。
所谓小概率事件原理是指人们根据长期的经验坚持这样一个信念:概率很小的事件在一次实际试验中是不可能发生的。如果在一次试验中小概率事件居然发生了,人们仍旧坚持上述信念,而宁愿认为此事件的前提条件起了变化,即认为假设和实际有矛盾,从而否定假设。
因此,假设检验实际上是一种反证法,即概率性质的反证法。具体地讲,它是指首先提出假设,然后根据一次抽样所得的样本值进行计算,后按照一定的概率标准对假设作出鉴别:若小概率事件发生,则否定假设;若小概率事件未发生,则认为假设是可以接受的。
▲大数定律和中心极限定理
重点:中心极限定理
(1)大数定理
(2)中心极限定理
(3)切比雪夫(chebyshev)不等式
重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式
难点:随机事件的概率,乘法公式、全概率公式、bayes公式以及对贝努利概型的事件的概率的计算
(2)古典概型与几何概型
(3)乘法公式和条件概率公式
(4)全概率公式和bayes公式
(5)事件的独立性
(6)贝努利概型
考试要求
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.
重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布
重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数
难点:各种数字特征的概念及算法
(1)数学期望与方差的计算
(4)协方差与相关系数的计算
▲数理统计的基本概念
(1)正态总体的抽样分布
(2)求统计量的数字特征
▲参数估计
重点:矩估计法、大似然估计法、置信区间及单侧置信区间
难点:估计量的评价标准
(1)求参数的矩估计和大似然估计
(2)估计量的评价标准(数学一)
(3)正态总体参数的区间估计(数学一)
考研数学频道精心为您推荐:
相关推荐: